RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2019, том 24, выпуск 3, страницы 281–297 (Mi rcd478)

Эта публикация цитируется в 1 статье

Precession of the Kovalevskaya and Goryachev – Chaplygin Tops

Ivan Yu. Polekhin

Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Аннотация: The change of the precession angle is studied analytically and numerically for two classical integrable tops: the Kovalevskaya top and the Goryachev – Chaplygin top. Based on the known results on the topology of Liouville foliations for these systems, we find initial conditions for which the average change of the precession angle is zero or can be estimated asymptotically. Some more difficult cases are studied numerically. In particular, we show that the average change of the precession angle for the Kovalevskaya top can be non-zero even in the case of zero area integral.

Ключевые слова: mean motion, Kovalevskaya top, Goryachev – Chaplygin top, integrable system, precession.

MSC: 70E17, 37J35

Поступила в редакцию: 18.03.2019
Принята в печать: 30.04.2019

Язык публикации: английский

DOI: 10.1134/S1560354719030031



Реферативные базы данных:


© МИАН, 2024