RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2019, том 24, выпуск 3, страницы 329–352 (Mi rcd481)

Эта публикация цитируется в 1 статье

A Parabolic Chaplygin Pendulum and a Paul Trap: Nonintegrability, Stability, and Boundedness

Alexey V. Borisovab, Alexander A. Kilinc, Ivan S. Mamaevde

a Institute of Mathematics and Mechanics of the Ural Branch of RAS, ul. S.Kovalevskoi 16, Ekaterinburg, 620990 Russia
b A.A. Blagonravov Mechanical Engineering Research Institute of RAS, ul. Bardina 4, Moscow, 117334 Russia
c Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
d Center for Technologies in Robotics and Mechatronics Components, Innopolis University, ul. Universitetskaya 1, Innopolis, 420500 Russia
e Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia

Аннотация: This paper is a small review devoted to the dynamics of a point on a paraboloid. Specifically, it is concerned with the motion both under the action of a gravitational field and without it. It is assumed that the paraboloid can rotate about a vertical axis with constant angular velocity. The paper includes both well-known results and a number of new results.
We consider the two most widespread friction (resistance) models: dry (Coulomb) friction and viscous friction. It is shown that the addition of external damping (air drag) can lead to stability of equilibrium at the saddle point and hence to preservation of the region of bounded motion in a neighborhood of the saddle point. Analysis of three-dimensional Poincaré sections shows that limit cycles can arise in this case in the neighborhood of the saddle point.

Ключевые слова: parabolic pendulum, Paul trap, rotating paraboloid, internal damping, external damping, friction, resistance, linear stability, Hill’s region, bifurcational diagram, Poincaré section, bounded trajectory, chaos, integrability, nonintegrability, sepa.

MSC: 37J25, 37J05

Поступила в редакцию: 28.03.2019
Принята в печать: 06.05.2019

Язык публикации: английский

DOI: 10.1134/S1560354719030067



Реферативные базы данных:


© МИАН, 2024