RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2015, том 20, выпуск 2, страницы 123–133 (Mi rcd49)

Эта публикация цитируется в 14 статьях

Analytical Solutions of the Lorenz System

Nikolay A. Kudryashov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, Moscow, 115409 Russia

Аннотация: The Lorenz system is considered. The Painlevé test for the third-order equation corresponding to the Lorenz model at $\sigma \ne 0$ is presented. The integrable cases of the Lorenz system and the first integrals for the Lorenz system are discussed. The main result of the work is the classification of the elliptic solutions expressed via the Weierstrass function. It is shown that most of the elliptic solutions are degenerated and expressed via the trigonometric functions. However, two solutions of the Lorenz system can be expressed via the elliptic functions.

Ключевые слова: Lorenz system, Painlevé property, Painlevé test, analytical solutions, elliptic solutions.

MSC: 01-00, 01A55, 01A60

Поступила в редакцию: 08.01.2015

Язык публикации: английский

DOI: 10.1134/S1560354715020021



Реферативные базы данных:


© МИАН, 2024