RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2010, том 15, выпуск 2-3, страницы 222–236 (Mi rcd490)

Эта публикация цитируется в 4 статьях

On the 75th birthday of Professor L.P. Shilnikov

Transverse intersections between invariant manifolds of doubly hyperbolic invariant tori, via the Poincaré–Mel’nikov method

A. Delshamsa, P. Gutiérreza, O. Koltsovab, J. R. Pachaa

a Dep. de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Catalonia, Spain
b Department of Mathematics, Imperial College London, SW7 2AZ London, UK

Аннотация: We consider a perturbation of an integrable Hamiltonian system having an equilibrium point of elliptic–hyperbolic type, having a homoclinic orbit. More precisely, we consider an $(n+2)$-degree-of-freedom near integrable Hamiltonian with $n$ centers and 2 saddles, and assume that the homoclinic orbit is preserved under the perturbation. On the center manifold near the equilibrium, there is a Cantorian family of hyperbolic KAM tori, and we study the homoclinic intersections between the stable and unstable manifolds associated to such tori. We establish that, in general, the manifolds intersect along transverse homoclinic orbits. In a more concrete model, such homoclinic orbits can be detected, in a first approximation, from nondegenerate critical points of a Mel’nikov potential. We provide bounds for the number of transverse homoclinic orbits using that, in general, the potential will be a Morse function (which gives a lower bound) and can be approximated by a trigonometric polynomial (which gives an upper bound).

Ключевые слова: hyperbolic KAM tori, transverse homoclinic orbits, Melnikov method.

MSC: 37J40, 37C29, 70H08

Поступила в редакцию: 22.12.2009
Принята в печать: 11.01.2010

Язык публикации: английский

DOI: 10.1134/S1560354710020103



Реферативные базы данных:


© МИАН, 2024