RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2010, том 15, выпуск 2-3, страницы 237–245 (Mi rcd491)

Эта публикация цитируется в 6 статьях

On the 75th birthday of Professor L.P. Shilnikov

Snap-back repellers in non-smooth functions

L. Gardinia, F. Tramontanab

a University of Urbino, 61029 Urbino, Italy
b Marche Polytechnic University, Piazzale Martelli, 60121 Ancona, Italy

Аннотация: In this work we consider the homoclinic bifurcations of expanding periodic points. After Marotto, when homoclinic orbits to expanding periodic points exist, the points are called snap-back-repellers. Several proofs of the existence of chaotic sets associated with such homoclinic orbits have been given in the last three decades. Here we propose a more general formulation of Marotto’s theorem, relaxing the assumption of smoothness, considering a generic piecewise smooth function, continuous or discontinuous. An example with a two-dimensional smooth map is given and one with a two-dimensional piecewise linear discontinuous map.

Ключевые слова: snap back repellers, homoclinic orbits in noninvertible maps, orbits homoclinic to expanding points.

MSC: 37E05, 37G10, 37G15

Поступила в редакцию: 15.11.2009
Принята в печать: 23.12.2009

Язык публикации: английский

DOI: 10.1134/S1560354710020115



Реферативные базы данных:


© МИАН, 2024