RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2010, том 15, выпуск 2-3, страницы 246–260 (Mi rcd492)

On the 75th birthday of Professor L.P. Shilnikov

Noninvertible maps and their embedding into higher dimensional invertible maps

C. Mira

19 rue d’Occitanie Fonsegrives, 31130 Quint, France

Аннотация: The first part is devoted to a presentation of specific features of noninvertible maps with respect to the invertible ones. When embedded into a three-dimensional invertible map, the specific dynamical features of a plane noninvertible map are the germ of the three-dimensional dynamics, at least for sufficiently small absolute values of the embedding parameter. The form of the paper, as well as its contents, is approached from a non abstract point of view, in an elementary form from a simple class of examples.

Ключевые слова: noninvertible maps, embedding problems, discrete dynamics, global bifurcations, critical sets, basin of attraction, fractal sets.

MSC: 10.1134/S1560354710020127

Поступила в редакцию: 15.11.2009
Принята в печать: 23.12.2010

Язык публикации: английский

DOI: 10.1134/S1560354710020127



Реферативные базы данных:


© МИАН, 2024