RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2010, том 15, выпуск 2-3, страницы 390–403 (Mi rcd504)

Эта публикация цитируется в 6 статьях

On the 75th birthday of Professor L.P. Shilnikov

Poles of tritronquée solution to the Painlevé I equation and cubic anharmonic oscillator

V. Yu. Novokshenov

Institute of Mathematics, RAS, Chernyshevskii str. 112, Ufa, 450077 Russia

Аннотация: The distribution of poles of zero-parameter solution to Painlevé I, specified by P. Boutroux as intégrale tritronquée, is studied in the complex plane. This solution has regular asymptotics $-\sqrt{z/6}+O(1)$ as $z \to \infty$, $|\arg z|<4\pi/5$. At the sector $|\arg z|>4\pi/5$ it is a meromorphic function with regular asymptotic distribution of poles at infinity. This fact together with numeric simulations for $|z|<\text{const}$ allowed B. Dubrovin to make a conjecture that all poles of the intégrale tritronquée belong to this sector. As a step to prove this conjecture, we study the Riemann–Hilbert (RH) problem related to the specified solution of the Painlevé I equation. It is "undressed" to a similar RH problem for the Schrödinger equation with cubic potential. The latter determines all coordinates of poles for the intégrale tritronquée via a Bohr–Sommerfeld quantization conditions.

Ключевые слова: Painlevé equation, special functions, distribution of poles, Riemann–Hilbert problem, WKB approximation, Bohr–Sommerfield quantization, complex cubic potential.

MSC: 33E17, 33F05, 34M50, 34M55, 34M60

Поступила в редакцию: 14.11.2009
Принята в печать: 16.02.2010

Язык публикации: английский

DOI: 10.1134/S1560354710020243



Реферативные базы данных:


© МИАН, 2024