RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2010, том 15, выпуск 2-3, страницы 404–417 (Mi rcd505)

Эта публикация цитируется в 5 статьях

On the 75th birthday of Professor L.P. Shilnikov

Periodic shadowing and $\Omega$-stability

A. V. Osipova, S. Yu. Pilyugina, S. B. Tikhomirovb

a Faculty of Mathematics and Mechanics, St. Petersburg State University, Universitetsky pr. 28, St. Petersburg, 198504 Russia
b Dept. of Math., National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan 10617

Аннотация: We show that the following three properties of a diffeomorphism $f$ of a smooth closed manifold are equivalent: (i) $f$ belongs to the $C^1$-interior of the set of diffeomorphisms having the periodic shadowing property; (ii) $f$ has the Lipschitz periodic shadowing property; (iii) $f$ is $\Omega$-stable.

Ключевые слова: periodic shadowing, hyperbolicity, $\Omega$-stability.

MSC: 37C50, 37D20

Поступила в редакцию: 27.11.2009
Принята в печать: 29.12.2009

Язык публикации: английский



© МИАН, 2024