RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2010, том 15, выпуск 4-5, страницы 482–503 (Mi rcd511)

Эта публикация цитируется в 7 статьях

On the 60th birthday of professor V.V. Kozlov

Geometry, topology and dynamics of geodesic flows on noncompact polygonal surfaces

Eugene Gutkinab

a Nicolaus Copernicus University (UMK), Chopina 12/18, Torun 87-100
b Mathematics Institute of the Polish Academy of Sciences (IMPAN), Sniadeckich 8, Warszawa 10, Poland

Аннотация: We establish the background for the study of geodesics on noncompact polygonal surfaces. For illustration, we study the recurrence of geodesics on $\mathbb{Z}$-periodic polygonal surfaces. We prove, in particular, that almost all geodesics on a topologically typical $\mathbb{Z}$-periodic surface with a boundary are recurrent.

Ключевые слова: (periodic) polygonal surface, geodesic, skew product, cross-section, displacement function, recurrence, transience, ergodicity.

MSC: 37C40, 37D50, 37E35

Поступила в редакцию: 12.03.2010
Принята в печать: 25.03.2010

Язык публикации: английский

DOI: 10.1134/S1560354710040064



Реферативные базы данных:


© МИАН, 2024