RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2010, том 15, выпуск 4-5, страницы 521–531 (Mi rcd513)

Эта публикация цитируется в 7 статьях

On the 60th birthday of professor V.V. Kozlov

Blowups of complex-valued solutions for some hydrodynamic models

D. Lia, Ya. G. Sinaibc

a Department of Mathematics, University of Iowa, 14 MacLean Hall, Iowa City, IA 52242
b Landau Institute of Theoretical Physics, Ak. Semenova av. 1-A, Moscow Region, Chernogolovka 142432, Russia
c Mathematics Department, Princeton University, Princeton NJ 08544

Аннотация: We study complex-valued blowups of solutions for several hydrodynamic models. For complex-valued initial conditions, smooth local solutions can have finite-time singularities since the energy inequality does not hold. By using some version of the renormalization group method, we derive the equations for corresponding fixed points and analyze the spectrum of the linearized operator. We describe the open set of initial conditions for which blowups at finite time can occur.

Ключевые слова: blowup, renormalization group method.

MSC: 35Q35

Поступила в редакцию: 29.01.2010
Принята в печать: 08.02.2010

Язык публикации: английский

DOI: 10.1134/S1560354710040088



Реферативные базы данных:


© МИАН, 2024