RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2010, том 15, выпуск 4-5, страницы 532–550 (Mi rcd514)

Эта публикация цитируется в 34 статьях

On the 60th birthday of professor V.V. Kozlov

Poisson structures for geometric curve flows in semi-simple homogeneous spaces

G. Marí Beffaa, P. J. Olverb

a Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706, USA
b School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, USA

Аннотация: We apply the equivariant method of moving frames to investigate the existence of Poisson structures for geometric curve flows in semi-simple homogeneous spaces. We derive explicit compatibility conditions that ensure that a geometric flow induces a Hamiltonian evolution of the associated differential invariants. Our results are illustrated by several examples of geometric interest.

Ключевые слова: moving frame, Poisson structure, homogeneous space, invariant curve flow, differential invariant, invariant variational bicomplex.

MSC: 22F05, 35A30, 35Q53, 53A55, 58A20, 53D17

Поступила в редакцию: 12.10.2009
Принята в печать: 13.03.2010

Язык публикации: английский

DOI: 10.1134/S156035471004009X



Реферативные базы данных:


© МИАН, 2024