RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2010, том 15, выпуск 4-5, страницы 575–597 (Mi rcd517)

Эта публикация цитируется в 5 статьях

On the 60th birthday of professor V.V. Kozlov

Coarse-grained entropy in dynamical systems

G. Piftankin, D. Treschev

V.A. Steklov Mathematical Institute, RAS, Gubkina str. 8, Moscow 119991, Russia

Аннотация: Let $M$ be the phase space of a physical system. Consider the dynamics, determined by the invertible map $T:M\to M$, preserving the measure $\mu$ on $M$. Let $\nu$ be another measure on $M$, $d\nu=\rho\,d\mu$. Gibbs introduced the quantity $s(\rho)=-\int \rho\log\rho\,d\mu$ as an analog of the thermodynamical entropy. We consider a modification of the Gibbs (fine-grained) entropy the so called coarse-grained entropy.
First we obtain a formula for the difference between the coarse-grained and Gibbs entropy. The main term of the difference is expressed by a functional usually referenced to as the Fisher information.
Then we consider the behavior of the coarse-grained entropy as a function of time. The dynamics transforms $\nu$ in the following way: $\nu\mapsto\nu_n$, $d\nu_n=\rho\circ T^{-n} d\mu$. Hence, we obtain the sequence of densities $\rho_n=\rho\circ T^{-n}$ and the corresponding values of the Gibbs and the coarse-grained entropy. We show that while the Gibbs entropy remains constant, the coarse-grained entropy has a tendency to a growth and this growth is determined by dynamical properties of the map $T$.
Finally, we give numerical calculation of the coarse-grained entropy as a function of time for systems with various dynamical properties: integrable, chaotic and with mixed dynamics and compare these calculation with theoretical statements.

Ключевые слова: Gibbs entropy, nonequilibrium thermodynamics, Lyapunov exponents, Gibbs ensemble.

MSC: 37A05, 37A60

Поступила в редакцию: 17.12.2009
Принята в печать: 24.12.2009

Язык публикации: английский

DOI: 10.1134/S156035471004012X



Реферативные базы данных:


© МИАН, 2024