RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2010, том 15, выпуск 4-5, страницы 606–629 (Mi rcd519)

Эта публикация цитируется в 21 статьях

On the 60th birthday of professor V.V. Kozlov

The dynamics of a rigid body in potential flow with circulation

J. Vankerschaverab, E. Kansoc, J. E. Marsdena

a Control and Dynamical Systems, California Institute of Technology, M/C 107-81, Pasadena, CA 91125-8100, USA
b Dept. of Mathematical Physics and Astronomy, Ghent University, Krijgslaan 281, B-9000 Ghent, Belgium
c Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA

Аннотация: We consider the motion of a two-dimensional body of arbitrary shape in a planar irrotational, incompressible fluid with a given amount of circulation around the body. We derive the equations of motion for this system by performing symplectic reduction with respect to the group of volume-preserving diffeomorphisms and obtain the relevant Poisson structures after a further Poisson reduction with respect to the group of translations and rotations. In this way, we recover the equations of motion given for this system by Chaplygin and Lamb, and we give a geometric interpretation for the Kutta–Zhukowski force as a curvature-related effect. In addition, we show that the motion of a rigid body with circulation can be understood as a geodesic flow on a central extension of the special Euclidian group $SE(2)$, and we relate the cocycle in the description of this central extension to a certain curvature tensor.

Ключевые слова: fluid-structure interactions, potential flow, circulation, symplectic reduction, diffeomorphism groups, oscillator group.

MSC: 76B47, 53D20, 74F10

Поступила в редакцию: 24.09.2009
Принята в печать: 13.11.2009

Язык публикации: английский

DOI: 10.1134/S1560354710040143



Реферативные базы данных:


© МИАН, 2024