Аннотация:
For flows defined on a compact manifold with or without boundary, it is shown that the connectivity components of a chain recurrent set possess a stronger connectivity known as joinability (or pointed 1-movability in the sense of Borsuk). As a consequence, the Vietoris–van Dantzig solenoid cannot be a component of a chain recurrent set, although the solenoid appears as a minimal set of a flow.
Ключевые слова:chain recurrent set, continuity in a covering, pointed 1-movability, joinability.