RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2010, том 15, выпуск 6, страницы 685–703 (Mi rcd528)

Эта публикация цитируется в 6 статьях

Self-similarity of the bandcount adding structures: calculation by map replacement

V. Avrutina, M. Schanza, L. Gardinib

a University of Stuttgart, Germany
b University of Urbino, Italy

Аннотация: Recently it has been demonstrated that the domain of robust chaos close to the periodic domain, which is organized by the period-adding structure, contains an infinite number of interior crisis bifurcation curves. These curves form the so-called bandcount adding scenario, which determines the occurrence of multi-band chaotic attractors. The analytical calculation of the interior crisis bifurcations represents usually a quite sophisticated and cumbersome task. In this work we demonstrate that, using the map replacement approach, the bifurcation curves can be calculated much easier. Moreover, using this approach recursively, we confirm the hypothesis regarding the self-similarity of the bandcount adding structure.

Ключевые слова: piecewise-linear maps, crisis bifurcations, chaotic attractors, bandcount adding and doubling, self-similarityand renormalization.

MSC: 37E05, 37G10, 37G35, 37D45, 37E20, 37F15

Поступила в редакцию: 28.12.2009
Принята в печать: 23.02.2010

Язык публикации: английский

DOI: 10.1134/S1560354710060055



Реферативные базы данных:


© МИАН, 2024