RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2015, том 20, выпуск 2, страницы 189–204 (Mi rcd53)

Эта публикация цитируется в 19 статьях

From Chaos to Quasi-Periodicity

Alexander P. Kuznetsovab, Natalia A. Migunovab, Igor R. Sataeva, Yuliya V. Sedovaa, Ludmila V. Turukinaab

a Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Saratov Branch, ul. Zelenaya 38, Saratov, 410019 Russia
b Saratov State University, ul. Astrakhanskaya 83, Saratov, 410012 Russia

Аннотация: Ensembles of several Rössler chaotic oscillators are considered. It is shown that a typical phenomenon for such systems is the emergence of different and sufficiently high dimensional invariant tori. The possibility of a quasi-periodic Hopf bifurcation and a cascade of such bifurcations based on tori of increasing dimension is demonstrated. The domains of resonance tori are revealed. Boundaries of these domains correspond to the saddle-node bifurcations. Inside the domains of resonance modes, torus-doubling bifurcations and destruction of tori are observed.

Ключевые слова: chaos, quasi-periodic oscillation, invariant torus, Lyapunov exponent, bifurcation.

MSC: 70K43, 65P20, 65P30, 34D08

Поступила в редакцию: 19.01.2015

Язык публикации: английский

DOI: 10.1134/S1560354715020070



Реферативные базы данных:


© МИАН, 2024