RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2019, том 24, выпуск 4, страницы 353–369 (Mi rcd530)

Эта публикация цитируется в 6 статьях

The Kepler Problem: Polynomial Algebra of Nonpolynomial First Integrals

Andrey V. Tsiganov

St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia

Аннотация: The sum of elliptic integrals simultaneously determines orbits in the Kepler problem and the addition of divisors on elliptic curves. Periodic motion of a body in physical space is defined by symmetries, whereas periodic motion of divisors is defined by a fixed point on the curve. The algebra of the first integrals associated with symmetries is a well-known mathematical object, whereas the algebra of the first integrals associated with the coordinates of fixed points is unknown. In this paper, we discuss polynomial algebras of nonpolynomial first integrals of superintegrable systems associated with elliptic curves.

Ключевые слова: algebra of first integrals, divisor arithmetic.

MSC: 70H12, 33E05, 37E99

Поступила в редакцию: 09.04.2019
Принята в печать: 09.06.2019

Язык публикации: английский

DOI: 10.1134/S1560354719040014



Реферативные базы данных:


© МИАН, 2024