RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2019, том 24, выпуск 4, страницы 392–417 (Mi rcd532)

On Transversal Connecting Orbits of Lagrangian Systems in a Nonstationary Force Field: the Newton – Kantorovich Approach

Alexey V. Ivanov

St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia

Аннотация: We consider a natural Lagrangian system defined on a complete Riemannian manifold subjected to the action of a nonstationary force field with potential $U(q,t) = f(t)V(q)$. It is assumed that the factor $f(t)$ tends to $\infty$ as $t\to \pm\infty$ and vanishes at a unique point $t_{0}\in \mathbb{R}$. Let $X_{+}$, $X_{-}$ denote the sets of isolated critical points of $V(x)$ at which $U(x,t)$ as a function of $x$ attains its maximum for any fixed $t> t_{0}$ and $t<t_{0}$, respectively. Under nondegeneracy conditions on points of $X_{\pm}$ we apply the Newton – Kantorovich type method to study the existence of transversal doubly asymptotic trajectories connecting $X_{-}$ and $X_{+}$. Conditions on the Riemannian manifold and the potential which guarantee the existence of such orbits are presented. Such connecting trajectories are obtained by continuation of geodesics defined in a vicinity of the point $t_{0}$ to the whole real line.

Ключевые слова: connecting orbits, homoclinics, heteroclinics, nonautonomous Lagrangian system, Newton – Kantorovich method.

MSC: 37J45, 37C29, 58K45, 65P10

Поступила в редакцию: 02.04.2019
Принята в печать: 06.07.2019

Язык публикации: английский

DOI: 10.1134/S1560354719040038



Реферативные базы данных:


© МИАН, 2024