RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2009, том 14, выпуск 1, страницы 18–41 (Mi rcd538)

Эта публикация цитируется в 25 статьях

JÜRGEN MOSER – 80

Multiparticle Systems. The Algebra of Integrals and Integrable Cases

A. V. Borisov, A. A. Kilin, I. S. Mamaev

Institute of Computer Science, Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia

Аннотация: Systems of material points interacting both with one another and with an external field are considered in Euclidean space. For the case of arbitrary binary interaction depending solely on the mutual distance between the bodies, new integrals are found, which form a Galilean momentum vector. A corresponding algebra of integrals constituted by the integrals of momentum, angular momentum, and Galilean momentum is presented. Particle systems with a particle­interaction potential homogeneous of degree $\alpha=-2$ are considered. The most general form of the additional integral of motion, which we term the Jacobi integral, is presented for such systems. A new nonlinear algebra of integrals including the Jacobi integral is found. A systematic description is given to a new reduction procedure and possibilities of applying it to dynamics with the aim of lowering the order of Hamiltonian systems. Some new integrable and superintegrable systems generalizing the classical ones are also described. Certain generalizations of the Lagrangian identity for systems with a particle­ interaction potential homogeneous of degree $\alpha=-2$ are presented. In addition, computational experiments are used to prove the nonintegrability of the Jacobi problem on a plane.

Ключевые слова: multiparticle systems, Jacobi integral.

MSC: 70Hxx, 70G65

Поступила в редакцию: 11.08.2008
Принята в печать: 04.12.2008

Язык публикации: английский

DOI: 10.1134/S1560354709010043



Реферативные базы данных:


© МИАН, 2024