Аннотация:
We study dynamics and bifurcations of three-dimensional diffeomorphisms with nontransverse heteroclinic cycles. We show that bifurcations under consideration lead to the birth of wild-hyperbolic Lorenz attractors. These attractors can be viewed as periodically perturbed classical Lorenz attractors, however, they allow for the existence of homoclinic tangencies and, hence, wild hyperbolic sets.