RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2009, том 14, выпуск 3, страницы 323–348 (Mi rcd553)

Эта публикация цитируется в 10 статьях

Non-Integrability of Hamiltonian Systems Through High Order Variational Equations: Summary of Results and Examples

R. Martíneza, C. Simób

a Dept. de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
b Dept. de Matemàtica Aplicada i Anàlisi, Univ. de Barcelona, Gran Via 585, 08007 Barcelona, Spain

Аннотация: This paper deals with non-integrability criteria, based on differential Galois theory and requiring the use of higher order variational equations. A general methodology is presented to deal with these problems. We display a family of Hamiltonian systems which require the use of order k variational equations, for arbitrary values of $k$, to prove non-integrability. Moreover, using third order variational equations we prove the non-integrability of a non-linear springpendulum problem for the values of the parameter that can not be decided using first order variational equations.

Ключевые слова: non-integrability criteria, differential Galois theory, higher order variationals, springpendulum system.

MSC: 37J30, 70H07, 34M35

Поступила в редакцию: 28.11.2008
Принята в печать: 06.04.2009

Язык публикации: английский

DOI: 10.1134/S1560354709030010



Реферативные базы данных:


© МИАН, 2025