Аннотация:
This paper deals with non-integrability criteria, based on differential Galois theory and requiring the use of higher order variational equations. A general methodology is presented to deal with these problems. We display a family of Hamiltonian systems which require the use of order k variational equations, for arbitrary values of $k$, to prove non-integrability. Moreover, using third order variational equations we prove the non-integrability of a non-linear springpendulum problem for the values of the parameter that can not be decided using first order variational equations.