RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2008, том 13, выпуск 2, страницы 81–84 (Mi rcd562)

Эта публикация цитируется в 8 статьях

Noncontinuous Maps and Devaney’s Chaos

M. Kulczycki

Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland

Аннотация: Vu Dong Tô has proven in [1] that for any mapping $f:X \to X$, where X is a metric space that is not precompact, the third condition in the Devaney’s definition of chaos follows from the first two even if $f$ is not assumed to be continuous. This paper completes this result by analysing the precompact case. We show that if $X$ is either finite or perfect one can always find a map $f:X \to X$ that satisfies the first two conditions of Devaney’s chaos but not the third. Additionally, if X is neither finite nor perfect there is no $f:X \to X$ that would satisfy the first two conditions of Devaney’s chaos at the same time.

Ключевые слова: Devaney’s chaos, noncontinuous map, precompact space.

MSC: 37B99, 54H20, 37B20, 34C25

Поступила в редакцию: 23.01.2008
Принята в печать: 04.02.2008

Язык публикации: английский

DOI: 10.1134/S1560354708020020



Реферативные базы данных:


© МИАН, 2024