RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2008, том 13, выпуск 3, страницы 178–190 (Mi rcd569)

Эта публикация цитируется в 25 статьях

On Maximally Superintegrable Systems

A. V. Tsiganov

V. A. Fock Institute of Physics, St. Petersburg State University, Petrodvorets, ul. Ulyanovskaya 1, St. Petersburg, 198504 Russia

Аннотация: Locally any completely integrable system is maximally superintegrable system since we have the necessary number of the action-angle variables. The main problem is the construction of the single-valued additional integrals of motion on the whole phase space by using these multi-valued action-angle variables. Some constructions of the additional integrals of motion for the Stackel systems and for the integrable systems related with two different quadratic $r$-matrix algebras are discussed. Among these system there are the open Heisenberg magnet and the open Toda lattices associated with the different root systems.

Ключевые слова: superintegrable systems, Toda lattices, Stackel systems.

MSC: 37J35, 53B20

Поступила в редакцию: 09.01.2008
Принята в печать: 28.04.2008

Язык публикации: английский

DOI: 10.1134/S1560354708030040



Реферативные базы данных:


© МИАН, 2024