RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2008, том 13, выпуск 3, страницы 204–220 (Mi rcd571)

Эта публикация цитируется в 5 статьях

Absolute and Relative Choreographies in Rigid Body Dynamics

A. V. Borisov, A. A. Kilin, I. S. Mamaev

Institute of Computer Science, Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia

Аннотация: For the classical problem of motion of a rigid body about a fixed point with zero area integral, we present a family of solutions that are periodic in the absolute space. Such solutions are known as choreographies. The family includes the well-known Delone solutions (for the Kovalevskaya case), some particular solutions for the Goryachev–Chaplygin case, and the Steklov solution. The "genealogy" of solutions of the family naturally appearing from the energy continuation and their connection with the Staude rotations are considered. It is shown that if the integral of areas is zero, the solutions are periodic with respect to a coordinate frame that rotates uniformly about the vertical (relative choreographies).

Ключевые слова: rigid-body dynamics, periodic solutions, continuation by a parameter, bifurcation.

MSC: 76B47, 37J35, 70E40

Поступила в редакцию: 14.03.2007
Принята в печать: 28.11.2007

Язык публикации: английский

DOI: 10.1134/S1560354708030064



Реферативные базы данных:


© МИАН, 2025