RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2008, том 13, выпуск 4, страницы 250–256 (Mi rcd576)

Эта публикация цитируется в 2 статьях

Nonholonomic mechanics

Hirota–Kimura Type Discretization of the Classical Nonholonomic Suslov Problem

V. Dragovićab, B. Gajića

a Mathematical Institute SANU, Kneza Mihaila 36, Belgrade, Serbia
b Grupo de Fisica Matematica, Complexo Interdisciplinar da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, PT-1649-003 Lisboa, Portugal

Аннотация: We constructed Hirota–Kimura type discretization of the classical nonholonomic Suslov problem of motion of rigid body fixed at a point. We found a first integral proving integrability. Also, we have shown that discrete trajectories asymptotically tend to a line of discrete analogies of so-called steady-state rotations. The last property completely corresponds to well-known property of the continuous Suslov case. The explicite formulae for solutions are given. In $n$-dimensional case we give discrete equations.

Ключевые слова: Hirota–Kimura type discretization, nonholonomic mechanics, Suslov problem, rigid body.

MSC: 37J60, 70H06

Поступила в редакцию: 26.06.2008
Принята в печать: 14.07.2008

Язык публикации: английский

DOI: 10.1134/S1560354708040023



Реферативные базы данных:


© МИАН, 2024