RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2008, том 13, выпуск 5, страницы 403–416 (Mi rcd586)

Эта публикация цитируется в 2 статьях

Nonholonomic mechanics

New Formula for the Eigenvectors of the Gaudin Model in the $sl(3)$ Case

Č. Burdíka, O. Navrátilb

a Department of Mathematics, Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Trojanova 13, 120 00 Prague 2, Czech Republic
b Department of Mathematics, Czech Technical University, Faculty of Transportation Sciences, Na Florenci 25, 110 00 Prague, Czech Republic

Аннотация: We propose new formulas for eigenvectors of the Gaudin model in the $sl(3)$ case. The central point of the construction is the explicit form of some operator $P$, which is used for derivation of eigenvalues given by the formula
$$|w_1,w_2)=\sum \limits^{\infty}_{n=0} \frac{P^n}{n!} |w_1,w_2,0>,$$
where $w_1, w_2$ fulfil the standard well-know Bethe Ansatz equations.

Ключевые слова: Gaudin model, Bethe Ansatz.

MSC: 81R10, 82B20, 82B23

Поступила в редакцию: 29.05.2008
Принята в печать: 29.08.2008

Язык публикации: английский

DOI: 10.1134/S156035470805002X



Реферативные базы данных:


© МИАН, 2024