RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2016, том 21, выпуск 2, страницы 232–248 (Mi rcd59)

Эта публикация цитируется в 4 статьях

Adiabatic Invariants, Diffusion and Acceleration in Rigid Body Dynamics

Alexey V. Borisov, Ivan S. Mamaev

Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991, Russia

Аннотация: The onset of adiabatic chaos in rigid body dynamics is considered. A comparison of the analytically calculated diffusion coefficient describing probabilistic effects in the zone of chaos with a numerical experiment is made. An analysis of the splitting of asymptotic surfaces is performed and uncertainty curves are constructed in the Poincaré – Zhukovsky problem. The application of Hamiltonian methods to nonholonomic systems is discussed. New problem statements are given which are related to the destruction of an adiabatic invariant and to the acceleration of the system (Fermi’s acceleration).

Ключевые слова: adiabatic invariants, Liouville system, transition through resonance, adiabatic chaos.

MSC: 70F15, 37J30, 37M25

Поступила в редакцию: 12.12.2015
Принята в печать: 29.01.2016

Язык публикации: английский

DOI: 10.1134/S1560354716020064



Реферативные базы данных:


© МИАН, 2024