RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2008, том 13, выпуск 5, страницы 424–430 (Mi rcd592)

Nonholonomic mechanics

Zero-Dispersion Limit to the Korteweg-de Vries Equation: a Dressing Chain Approach

V. Yu. Novokshenov

Institute of Mathematics, Russian Academy of Sciences, ul. Chernyshevskogo 112, Ufa, 450077 Russia

Аннотация: An asymptotic solution of the KdV equation with small dispersion is studied for the case of smooth hump-like initial condition with monotonically decreasing slopes. Despite the well-known approaches by Lax–Levermore and Gurevich–Pitaevskii, a new way of constructing the asymptotics is proposed using the inverse scattering transform together with the dressing chain technique developed by A. Shabat [1]. It provides the Whitham-type approximaton of the leading term by solving the dressing chain through a finite-gap asymptotic ansatz. This yields the Whitham equations on the Riemann invariants together with hodograph transform which solves these equations explicitly. Thus we reproduce an uniform in x asymptotics consisting of smooth solution of the Hopf equation outside the oscillating domain and a slowly modulated cnoidal wave within the domain. Finally, the dressing chain technique provides the proof of an asymptotic estimate for the leading term.

Ключевые слова: KdV, small dispersion limit, wave collapse, dressing chain.

MSC: 34E15, 35Q53, 35Q51, 37K15

Поступила в редакцию: 20.06.2008
Принята в печать: 17.08.2008

Язык публикации: английский

DOI: 10.1134/S1560354708050043



Реферативные базы данных:


© МИАН, 2024