RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2008, том 13, выпуск 6, страницы 543–556 (Mi rcd600)

Эта публикация цитируется в 24 статьях

JÜRGEN MOSER – 80

Integrable Lotka–Volterra systems

O.I. Bogoyavlenskijab

a V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b Department of Mathematics, Queen’s University, Kingston, K7L 3N6, Canada

Аннотация: Infinite- and finite-dimensional lattices of Lotka–Volterra type are derived that possess Lax representations and have large families of first integrals. The obtained systems are Hamiltonian and contain perturbations of Volterra lattice. Examples of Liouville-integrable 4-dimensional Hamiltonian Lotka-Volterra systems are presented. Several 5-dimensional Lotka–Volterra systems are found that have Lax representations and are Liouville-integrable on constant levels of Casimir functions.

Ключевые слова: Lax representation, Hamiltonian structures, Casimir functions, Riemannian surfaces, Lotka–Volterra systems, integrable lattices.

MSC: 58F05

Поступила в редакцию: 06.09.2008
Принята в печать: 28.10.2008

Язык публикации: английский

DOI: 10.1134/S1560354708060051



Реферативные базы данных:


© МИАН, 2024