RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2008, том 13, выпуск 6, страницы 602–644 (Mi rcd605)

Эта публикация цитируется в 12 статьях

JÜRGEN MOSER – 80

Global properties of integrable Hamiltonian systems

F. Takens, H. W. Broer, O. V. Lukina

Institute for Mathematics and Computer Science, University of Groningen P.O. Box 407, 9700 AK Groningen, The Netherlands

Аннотация: This paper deals with Lagrangian bundles which are symplectic torus bundles that occur in integrable Hamiltonian systems. We review the theory of obstructions to triviality, in particular monodromy, as well as the ensuing classification problems which involve the Chern and Lagrange class. Our approach, which uses simple ideas from differential geometry and algebraic topology, reveals the fundamental role of the integer affine structure on the base space of these bundles. We provide a geometric proof of the classification of Lagrangian bundles with fixed integer affine structure by their Lagrange class.

Ключевые слова: integrable Hamiltonian system, global action-angle coordinates, symplectic topology, monodromy, Lagrange class, classification of integrable systems.

MSC: 37J15, 37J35, 57R17, 57R20, 57R22

Поступила в редакцию: 31.05.2008
Принята в печать: 22.08.2008

Язык публикации: английский

DOI: 10.1134/S1560354708060105



Реферативные базы данных:


© МИАН, 2024