RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2007, том 12, выпуск 1, страницы 27–38 (Mi rcd609)

Эта публикация цитируется в 13 статьях

Symmetry of the Restricted 4+1 Body Problem with Equal Masses

C. Vidala, A. A. Santosb

a Departamento de Matemática, Facultad de Ciencias, Universidad del Bío Bío, Casilla 5-C, Concepción, VIII-Región, Chile
b Departamento de Matemática, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão-SE, CEP. 49100-000, Brazil

Аннотация: We consider the problem of symmetry of the central configurations in the restricted 4+1 body problem when the four positive masses are equal and disposed in symmetric configurations, namely, on a line, at the vertices of a square, at the vertices of a equilateral triangle with a mass at the barycenter, and finally, at the vertices of a regular tetrahedron [1-3]. In these situations, we show that in order to form a non collinear central configuration of the restricted 4+1 body problem, the null mass must be on an axis of symmetry. In our approach, we will use as the main tool the quadratic forms introduced by A. Albouy and A. Chenciner [4]. Our arguments are general enough, so that we can consider the generalized Newtonian potential and even the logarithmic case. To get our results, we identify some properties of the Newtonian potential (in fact, of the function $\varphi(s) = -s^k$, with $k<0$) which are crucial in the proof of the symmetry.

Ключевые слова: $n$-body problem, central configurations, symmetry.

MSC: 37C75, 34D20, 34A25

Поступила в редакцию: 02.02.2006
Принята в печать: 11.11.2006

Язык публикации: английский

DOI: 10.1134/S1560354707010030



Реферативные базы данных:


© МИАН, 2024