RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2007, том 12, выпуск 1, страницы 39–55 (Mi rcd610)

Эта публикация цитируется в 17 статьях

Euler Configurations and Quasi-Polynomial Systems

A. Albouya, Y. Fub

a Astronomie et Systémes Dynamiques, IMCCE, 77, av. Denfert-Rochereau, Paris 75014, France
b Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008, P. R. China

Аннотация: Consider the problem of three point vortices (also called Helmholtz' vortices) on a plane, with arbitrarily given vorticities. The interaction between vortices is proportional to $1/r$, where $r$ is the distance between two vortices. The problem has 2 equilateral and at most 3 collinear normalized relative equilibria. This 3 is the optimal upper bound. Our main result is that the above standard statements remain unchanged if we consider an interaction proportional to $r^b$, for any $b<0$. For $0<b<1$, the optimal upper bound becomes 5. For positive vorticities and any b<1, there are exactly 3 collinear normalized relative equilibria. The case $b=-2$ of this last statement is the well-known theorem due to Euler: in the Newtonian 3-body problem, for any choice of the 3 masses, there are 3 Euler configurations (also known as the 3 Euler points). These small upper bounds strengthen the belief of Kushnirenko and Khovanskii [18]: real varieties defined by simple systems should have a simple topology. We indicate some hard conjectures about the configurations of relative equilibrium and suggest they could be attacked within the quasi-polynomial framework.

Ключевые слова: relative equilibria, point vortex, real solutions.

MSC: 70F07, 74G05, 26B25

Поступила в редакцию: 12.07.2006
Принята в печать: 14.09.2006

Язык публикации: английский

DOI: 10.1134/S1560354707010042



Реферативные базы данных:


© МИАН, 2024