RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2007, том 12, выпуск 1, страницы 56–67 (Mi rcd611)

Эта публикация цитируется в 5 статьях

The Lagrange–D'Alembert–Poincaré Equations and Integrability for the Euler's Disk

H. Cendra, V. Diaz

Departamento de Matematica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca and CONICET, Argentina

Аннотация: Nonholonomic systems are described by the Lagrange–D'Alembert's principle. The presence of symmetry leads, upon the choice of an arbitrary principal connection, to a reduced D'Alembert's principle and to the Lagrange–D'Alembert–Poincaré reduced equations. The case of rolling constraints has a long history and it has been the purpose of many works in recent times. In this paper we find reduced equations for the case of a thick disk rolling on a rough surface, sometimes called Euler's disk, using a 3-dimensional abelian group of symmetry. We also show how the reduced system can be transformed into a single second order equation, which is an hypergeometric equation.

Ключевые слова: nonholonomic systems, symmetry, integrability, Euler's disk.

MSC: 70F25, 37J60, 70H33

Поступила в редакцию: 12.09.2005
Принята в печать: 25.09.2006

Язык публикации: английский

DOI: 10.1134/S1560354707010054



Реферативные базы данных:


© МИАН, 2024