RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2007, том 12, выпуск 1, страницы 81–85 (Mi rcd613)

On a Partial Integral which can be Derived from Poisson Matrix

D. B. Zotev

Department of Mathematics Applications, Volgograd State Technical University, Lenina ul. 28, 400131 Volgograd, Russia

Аннотация: Consider a surface which is a common level of some functions. Suppose that this surface is invariant under a Hamiltonian system. The question is if a partial integral can be derived explicitly from the Poisson matrix of these functions. In some cases such an integral is equal to the determinant of the matrix. This paper establishes a necessary and sufficient condition for this to hold true. The partial integral that results is not trivial if the induced Poisson structure is non-degenerate at one point at least. Therefore, the invariant surface must be even-dimensional.

Ключевые слова: Hamiltonian system, invariant submainfold, partial integral, Poisson matrix determinant, trace matrix.

MSC: 37J05, 37J15, 70S05, 70H05

Поступила в редакцию: 16.01.2006
Принята в печать: 20.09.2006

Язык публикации: английский

DOI: 10.1134/S1560354707010078



Реферативные базы данных:


© МИАН, 2024