RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2007, том 12, выпуск 2, страницы 153–159 (Mi rcd618)

Эта публикация цитируется в 32 статьях

Rolling of a Non-homogeneous Ball Over a Sphere Without Slipping and Twisting

A. V. Borisov, I. S. Mamaev

Institute of Computer Science, Udmurt State University, Universitetskaya ul. 1, Izhevsk 426034, Russia

Аннотация: Consider the problem of rolling a dynamically asymmetric balanced ball (the Chaplygin ball) over a sphere. Suppose that the contact point has zero velocity and the projection of the angular velocity to the normal vector of the sphere equals zero. This model of rolling differs from the classical one. It can be realized, in some approximation, if the ball is rubber coated and the sphere is absolutely rough. Recently, J. Koiller and K. Ehlers pointed out the measure and the Hamiltonian structure for this problem. Using this structure we construct an isomorphism between this problem and the problem of the motion of a point on a sphere in some potential field. The integrable cases are found.

Ключевые слова: nonholonomic mechanics, reducing multiplier, hamiltonization, isomorphism.

MSC: 37N05, 76M23

Поступила в редакцию: 09.12.2006
Принята в печать: 28.02.2007

Язык публикации: английский

DOI: 10.1134/S1560354707020037



Реферативные базы данных:


© МИАН, 2025