RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2007, том 12, выпуск 2, страницы 172–197 (Mi rcd620)

Эта публикация цитируется в 5 статьях

Geodesic Flow on Three-Dimensional Ellipsoids with Equal Semi-Axes

C. M. Davison, H. R. Dullin

Department of Mathematical Sciences, Loughborough University Loughborough, Leicestershire, LE11 3TU, U. K.

Аннотация: Following on from our previous study of the geodesic flow on three dimensional ellipsoid with equal middle semi-axes, here we study the remaining cases: Ellipsoids with two sets of equal semi-axes with $SO(2) \times SO(2)$ symmetry, ellipsoids with equal larger or smaller semi-axes with $SO(2)$ symmetry, and ellipsoids with three semi-axes coinciding with $SO(3)$ symmetry. All of these cases are Liouville-integrable, and reduction of the symmetry leads to singular reduced systems on lower-dimensional ellipsoids. The critical values of the energy-momentum maps and their singular fibers are completely classified. In the cases with $SO(2)$ symmetry there are corank 1 degenerate critical points; all other critical points are non-degenreate. We show that in the case with $SO(2) \times SO(2)$ symmetry three global action variables exist and the image of the energy surface under the energy-momentum map is a convex polyhedron. The case with $SO(3)$ symmetry is non-commutatively integrable, and we show that the fibers over regular points of the energy-casimir map are $T^2$ bundles over $S^2$.

Ключевые слова: geodesic flow, integrable systems, symmetry, reduction, action variables.

MSC: 37J15, 37J35, 53D25, 70H06, 70H33

Поступила в редакцию: 20.12.2006
Принята в печать: 20.02.2007

Язык публикации: английский

DOI: 10.1134/S1560354707020050



Реферативные базы данных:


© МИАН, 2024