RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2007, том 12, выпуск 3, страницы 233–266 (Mi rcd623)

Эта публикация цитируется в 28 статьях

Bifurcations of Three-Dimensional Diffeomorphisms with Non-Simple Quadratic Homoclinic Tangencies and Generalized Hénon Maps

S. V. Gonchenkoa, V. S. Gonchenkoa, J. C. Tatjerb

a Institute for Applied Mathematics and Cybernetics, ul. Uljanova 10, Nizhny Novgorod, 603005 Russia
b Departament de Matemática Aplicada i Análisi, Gran Via de les Corts Catalanes 585, Barcelona 08007, Spain

Аннотация: We study bifurcations of periodic orbits in two parameter general unfoldings of a certain type homoclinic tangency (called a generalized homoclinic tangency) to a saddle fixed point. We apply the rescaling technique to first return (Poincaré) maps and show that the rescaled maps can be brought to so-called generalized Hénon maps which have non-degenerate bifurcations of fixed points including those with multipliers $e^{\pm i \phi}$. On the basis of this, we prove the existence of infinite cascades of periodic sinks and periodic stable invariant circles.

Ключевые слова: homoclinic tangency, rescaling, generalized Henon map, bifurcation.

MSC: 37C05, 37G25, 37G35

Поступила в редакцию: 03.03.2007
Принята в печать: 10.05.2007

Язык публикации: английский

DOI: 10.1134/S156035470703001X



Реферативные базы данных:


© МИАН, 2024