RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2007, том 12, выпуск 3, страницы 281–320 (Mi rcd625)

Эта публикация цитируется в 10 статьях

On the Existence of Invariant Tori in Nearly-Integrable Hamiltonian Systems With Finitely Differentiable Perturbations

J. Albrecht

Friedrichshof, Köln, 50997 Germany

Аннотация: We prove the existence of invariant tori in Hamiltonian systems, which are analytic and integrable except a $2n$-times continuously differentiable perturbation ($n$ denotes the number of the degrees of freedom), provided that the moduli of continuity of the $2n$-th partial derivatives of the perturbation satisfy a condition of finiteness (condition on an integral), which is more general than a Hölder condition. So far the existence of invariant tori could be proven only under the condition that the $2n$-th partial derivatives of the perturbation are Hölder continuous.

Ключевые слова: nearly integrable Hamiltonian systems, KAM theory, perturbations, small divisors, Celestial Mechanics, quasi-periodic motions, invariant tori, trigonometric approximation in several variables, Holder condition.

MSC: 70H08, 37J40, 70K43, 70F15, 42A10, 26B35

Поступила в редакцию: 17.11.2006
Принята в печать: 02.05.2007

Язык публикации: английский

DOI: 10.1134/S1560354707030033



Реферативные базы данных:


© МИАН, 2024