RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2015, том 20, выпуск 1, страницы 94–108 (Mi rcd63)

Эта публикация цитируется в 5 статьях

A $\lambda$-lemma for Normally Hyperbolic Invariant Manifolds

Jacky Cressonab, Stephen Wigginsc

a SYRTE, UMR 8630 CNRS, Observatoire de Paris, 77 avenue Denfert-Rochereau, 75014, Paris, France
b Laboratoire de Mathématiques Appliquées de Pau, UMR CNRS 5142, Université de Pau et des Pays de l’Adour, avenue de l’Université, BP 1155, 64013, Pau Cedex, France
c School of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, UK

Аннотация: Let $N$ be a smooth manifold and $f: N \to N$ be a $C^\mathcal{l}, \mathcal{l} \geqslant 2$ diffeomorphism. Let $M$ be a normally hyperbolic invariant manifold, not necessarily compact. We prove an analogue of the $\lambda$-lemma in this case. Applications of this result are given in the context of normally hyperbolic invariant annuli or cylinders which are the basic pieces of all geometric mechanisms for diffusion in Hamiltonian systems. Moreover, we construct an explicit class of three-degree-of-freedom near-integrable Hamiltonian systems which satisfy our assumptions.

Ключевые слова: $\lambda$-lemma, Arnold diffusion, normally hyperbolic manifolds, Moeckel’s mechanism.

MSC: 37-XX, 37Dxx, 37Jxx

Поступила в редакцию: 28.11.2014
Принята в печать: 30.12.2014

Язык публикации: английский

DOI: 10.1134/S1560354715010074



Реферативные базы данных:


© МИАН, 2025