RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2016, том 21, выпуск 1, страницы 1–17 (Mi rcd64)

Эта публикация цитируется в 6 статьях

Topological Analysis Corresponding to the Borisov–Mamaev–Sokolov Integrable System on the Lie Algebra $so(4)$

Rasoul Akbarzadeh

Department of Fundamental Sciences, Azarbaijan Shahid Madani University, 35 Km Tabriz-Maragheh Road, Tabriz, Iran

Аннотация: In 2001, A. V. Borisov, I. S. Mamaev, and V. V. Sokolov discovered a new integrable case on the Lie algebra $so(4)$. This is a Hamiltonian system with two degrees of freedom, where both the Hamiltonian and the additional integral are homogenous polynomials of degrees 2 and 4, respectively. In this paper, the topology of isoenergy surfaces for the integrable case under consideration on the Lie algebra $so(4)$ and the critical points of the Hamiltonian under consideration for different values of parameters are described and the bifurcation values of the Hamiltonian are constructed. Also, a description of bifurcation complexes and typical forms of the bifurcation diagram of the system are presented.

Ключевые слова: topology, integrable Hamiltonian systems, isoenergy surfaces, critical set, bifurcation diagram, bifurcation complex, periodic trajectory.

MSC: 37Jxx, 70H06, 70E50, 70G40, 70H14

Поступила в редакцию: 17.09.2015
Принята в печать: 20.12.2015

Язык публикации: английский

DOI: 10.1134/S1560354716010019



Реферативные базы данных:


© МИАН, 2024