RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2007, том 12, выпуск 6, страницы 622–629 (Mi rcd643)

Эта публикация цитируется в 11 статьях

On the 65th birthday of R.Cushman

Non-Integrability of Some Painlevé VI-Equations and Dilogarithms

E. Horozovab, T. Stoyanovaa

a Department of Mathematics and Informatics, Sofia University, 5 J. Bourchier Blvd., Sofia 1126, Bulgari
b Institute of Mathematics and Informatics, Bulg. Acad. of Sci., Acad. G. Bonchev Str., Block 8, 1113 Sofia, Bulgari

Аннотация: The paper studies the Painlevé VIe equations from the point of view of Hamiltonian nonintegrability. For certain infinite number of points in the parameter space we prove that the equations are not integrable. Our approach uses recent advance in Hamiltonian integrability reducing the problem to higher differential Galois groups as well as the monodromy of dilogarithic functions.

Ключевые слова: integrability, Painlevé VI-equations, Hamiltonian system.

MSC: 34M55, 37J30

Поступила в редакцию: 12.08.2007
Принята в печать: 25.10.2007

Язык публикации: английский

DOI: 10.1134/S1560354707060056



Реферативные базы данных:


© МИАН, 2024