RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2016, том 21, выпуск 1, страницы 18–23 (Mi rcd65)

Эта публикация цитируется в 2 статьях

Local Normal Forms of Smooth Weakly Hyperbolic Integrable Systems

Kai Jiang

Institut de Mathématiques de Jussieu — Paris Rive Gauche, Université Paris 7 7050 Bâtiment Sophie Germain, Case 7012, 75205 Paris CEDEX 13, France

Аннотация: In the smooth $(C^\infty)$ category, a completely integrable system near a nondegenerate singularity is geometrically linearizable if the action generated by the vector fields is weakly hyperbolic. This proves partially a conjecture of Nguyen Tien Zung [11]. The main tool used in the proof is a theorem of Marc Chaperon [3] and the slight hypothesis of weak hyperbolicity is generic when all the eigenvalues of the differentials of the vector fields at the non-degenerate singularity are real.

Ключевые слова: completely integrable systems, geometric linearization, nondegenerate singularity, weak hyperbolicity.

MSC: 37C05, 37C10, 37C25, 37D05, 37D10, 37J60

Поступила в редакцию: 02.04.2015
Принята в печать: 13.08.2015

Язык публикации: английский

DOI: 10.1134/S1560354716010020



Реферативные базы данных:


© МИАН, 2024