RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2007, том 12, выпуск 6, страницы 717–731 (Mi rcd650)

Эта публикация цитируется в 6 статьях

On the 65th birthday of R.Cushman

Infinitesimally Stable and Unstable Singularities of 2-Degrees of Freedom Completely Integrable Systems

A. Giacobbe

Università di Padova, Dipartimento di Matematica Pura e Applicata, Via Trieste 63, 35121 Padova, Italy

Аннотация: In this article we give a list of 10 rank zero and 6 rank one singularities of 2-degrees of freedom completely integrable systems. Among such singularities, 14 are the singularities that satisfy a non-vanishing condition on the quadratic part, the remaining 2 are rank 1 singularities that play a role in the geometry of completely integrable systems with fractional monodromy. We describe which of them are stable and which are unstable under infinitesimal completely integrable deformations of the system.

Ключевые слова: singularities, completely integrable systems, bifurcation diagrams, infinitesimal deformations, cusps, local normal forms.

MSC: 55R55, 37J35

Поступила в редакцию: 08.08.2007
Принята в печать: 13.10.2007

Язык публикации: английский

DOI: 10.1134/S1560354707060123



Реферативные базы данных:


© МИАН, 2024