RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2006, том 11, выпуск 1, страницы 61–66 (Mi rcd657)

Эта публикация цитируется в 2 статьях

On the full number of collisions in certain one-dimensional billiard problems

I. V. Gorelyshev

Space Research Institute, RAS, 84/32, Profsoyuznaya str., 117997 Moscow, Russia

Аннотация: In the present work we consider motion of a light particle between a wall and a massive particle. Collisions in the system are elastic. In [1] the full number of collisions in this system was calculated. It turned out to be approximately equal to the product of number $\pi$ and the square root of ratio of the particles' masses. This formula was derived using reduction of the system to a billiard. In the present work this result is derived by means of the adiabatic perturbation theory for systems with impacts [2].

Ключевые слова: canonical perturbation theory, adiabatic approximation, billiards, impacts.

MSC: 70G60, 70H09, 70H11, 70K70

Поступила в редакцию: 15.07.2005
Принята в печать: 05.12.2005

Язык публикации: английский

DOI: 10.1070/RD2006v011n01ABEH000334



Реферативные базы данных:


© МИАН, 2024