Аннотация:
The article is a survey on local and global structures (including classification results) of expanding attractors of diffeomorphisms $f : M \to M$ of a closed smooth manifold $M$. Beginning with the most familiar expanding attractors (Smale solenoid; DA-attractor; Plykin attractor; Robinson–Williams attractors), one reviews the Williams theory, Bothe's classification of one-dimensional solenoids in 3-manifolds, Grines–Plykin–Zhirov's classification of one-dimensional expanding attractors on surfaces, and Grines–Zhuzhoma's classification of codimension one expanding attractors of structurally stable diffeomorphisms. The main theorems are endowed with ideas of proof.