RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2006, том 11, выпуск 2, страницы 247–258 (Mi rcd671)

Эта публикация цитируется в 11 статьях

On the 70th birthday of L.P. Shilnikov

Hard bifurcations in dynamical systems with bounded random perturbations

A. J. Homburga, T. Youngb

a KdV Institute for Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
b Department of Mathematics, Ohio University, Athens, OH 45701

Аннотация: We study bifurcations in dynamical systems with bounded random perturbations. Such systems, which arise quite naturally, have been nearly ignored in the literature, despite a rich body of work on systems with unbounded, usually normally distributed, noise. In systems with bounded random perturbations, new kinds of bifurcations that we call 'hard' may happen and in fact do occur in many situations when the unperturbed deterministic systems experience elementary, codimension-one bifurcations such as saddle-node and homoclinic bifurcations. A hard bifurcation is defined as discontinuous change in the density function or support of a stationary measure of the system.

Ключевые слова: bifurcations, random perturbations.

MSC: 34F05, 37H20

Поступила в редакцию: 03.10.2005
Принята в печать: 11.12.2005

Язык публикации: английский

DOI: 10.1070/RD2006v011n02ABEH000348



Реферативные базы данных:


© МИАН, 2024