RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2006, том 11, выпуск 2, страницы 291–297 (Mi rcd675)

On the 70th birthday of L.P. Shilnikov

Partial normal form near a saddle of a Hamiltonian system

L. M. Lerman

Institute for Applied Mathematics and Cybernetics, 10, Uljanova Str. 603005 Nizhny Novgorod, Russia

Аннотация: For a smooth or real analytic Hamiltoniain vector field with two degrees of freedom we derive a local partial normal form of the vector field near a saddle equilibrium (two pairs of real eigenvalues $\pm \lambda_1$, $\pm \lambda_2$, $ \lambda_1 > \lambda_2 > 0$). Only a resonance $ \lambda_1 = n \lambda_2$ (if is present) influences on the normal form. This form allows one to get convenient almost linear estimates for solutions of the vector field using the Shilnikov's boundary value problem. Such technique is used when studying the orbit behavior near homoclinic orbits to saddle equilibria in a Hamiltonian system. The form obtained depends smoothly on parameters, if the vector field smoothly depends on parameters.

Ключевые слова: Hamiltonian, saddle, normal form, symplectic transformation, invariant manifold.

MSC: 34C20, 34C14

Поступила в редакцию: 08.11.2005
Принята в печать: 16.01.2006

Язык публикации: английский

DOI: 10.1070/RD2006v011n02ABEH000352



Реферативные базы данных:


© МИАН, 2024