RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2006, том 11, выпуск 4, страницы 467–473 (Mi rcd687)

Эта публикация цитируется в 19 статьях

On quadratic stochastic operators generated by Gibbs distributions

N. N. Ganikhodzhaeva, U. A. Rozikovb

a International Islamic University Malaysia, 53100 Kuala Lumpur, Malaysia
b Institute of Mathematics, 29, F. Hodjaev str., 700125 Tashkent, Uzbekistan

Аннотация: We give a constructive description of quadratic stochastic operators which act to the set of all probability measures on some measurable space. Our construction depends on a probability measure $\mu$ and cardinality of a set of cells (configurations) which here can be finite or continual. We study behavior of trajectories of such operators for a given probability measure $\mu$ which coincides with a Gibbs measure. For the continual case we compare the quadratic operators which correspond to well-known Gibbs measures of the Potts model on $Z^d$. These investigations allows a natural introduction of thermodynamics in studying some models of heredity. In particular, we show that any trajectory of the quadratic stochastic operator generated by a Gibbs measure $\mu$ of the Potts model converges to this measure

Ключевые слова: quadratic stochastic operator, Gibbs distribution, Potts model.

MSC: 37C20, 37C25, 82B26

Поступила в редакцию: 12.10.2005
Принята в печать: 24.04.2006

Язык публикации: английский

DOI: 10.1070/RD2006v011n04ABEH000364



Реферативные базы данных:


© МИАН, 2024