RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2005, том 10, выпуск 1, страницы 39–58 (Mi rcd695)

Эта публикация цитируется в 10 статьях

Point vortices on a rotating sphere

F. Laurent-Polz

Institut Non Linéaire de Nice, Université de Nice, 1361 route des lucioles, 06560 Valbonne, France

Аннотация: We study the dynamics of $N$ point vortices on a rotating sphere. The Hamiltonian system becomes infinite dimensional due to the non-uniform background vorticity coming from the Coriolis force. We prove that a relative equilibrium formed of latitudinal rings of identical vortices for the non-rotating sphere persists to be a relative equilibrium when the sphere rotates. We study the nonlinear stability of a polygon of planar point vortices on a rotating plane in order to approximate the corresponding relative equilibrium on the rotating sphere when the ring is close to the pole. We then perform the same study for geostrophic vortices. To end, we compare our results to the observations on the southern hemisphere atmospheric circulation.

Ключевые слова: point vortices, rotating sphere, relative equilibria, nonlinear stability, planar vortices, geostrophic vortices, Southern Hemisphere Circulation.

MSC: 70E55, 70H14, 70H33

Поступила в редакцию: 06.08.2004
Принята в печать: 09.12.2004

Язык публикации: английский

DOI: 10.1070/RD2005v010n01ABEH000299



Реферативные базы данных:


© МИАН, 2024