RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2005, том 10, выпуск 1, страницы 71–80 (Mi rcd697)

Эта публикация цитируется в 8 статьях

Chaotic burst in the dynamics of $f_{\lambda}(z) = \lambda \frac{\sinh(z)}{z}$

M. Guru Prem Prasad

Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati 781039, India

Аннотация: In this paper, a one-parameter family of non-critically finite entire functions $\mathscr{F} \equiv {f_{\lambda}(z) = \lambda f(z) : \lambda \in \mathbb{R} \backslash {0}}$ with $f (z) = \lambda \frac{\sinh(z)}{z}$ is considered and the dynamics of the entire transcendental functions $f_{\lambda} \in \mathscr{F}$ is studied in detail. It is shown that there exists a parameter value $\lambda^{*} > 0$ such that the Julia set of $f_{\lambda}(z) $ is nowhere dense subset for $0<|\lambda| \leqslant \lambda^{*} (\approx 1.104)$. For $|\lambda| > \lambda^{*}$ the set explodes and becomes equal to the extended complex plane. This phenomenon is referred to as a chaotic burst in the dynamics of the functions $f_{\lambda}$ in the one-parameter family $\mathscr{F}$.

Ключевые слова: Fatou sets, Julia sets and Chaotic Burst.

MSC: 37F45, 37F50

Поступила в редакцию: 14.07.2004
Принята в печать: 08.12.2004

Язык публикации: английский

DOI: 10.1070/RD2005v010n01ABEH000301



Реферативные базы данных:


© МИАН, 2024